USN

Third Semester B.E. Degree Examination, Dec. 2013/Jan. 2014 **Logic Design**

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting

- PART A

 1 a. Design a three input, one output minimal tow-level gate combinational circuit which has a noutput equal to 1 when majority of its inputs are at logic 1 and has an output equal to 0 (08 Marks)

 1 a. Design a three input, one output minimal tow-level gate combinational circuit which has a noutput equal to 0 (08 Marks)

 $\overline{Y} = \overline{A} B \overline{C} \overline{D} + \overline{A} B \overline{C} D + A B \overline{C} \overline{D} + A B \overline{C} D + A \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} \overline{D}$. (06 Marks)

c. Reduce the following function using K – Map technique $f(A, B, C, D) = \pi M(0.3, 4, 7, 8, 10, 12, 14) + d(2, 6)$.

(06 Marks)

Obtain all the prime implicants of the following Been function using Quine - Mccluskey 2 method.

 $f(a, b, c, d) = \Sigma(0, 2, 3, 5, 8, 10, 11)$

verify the result using k - Map technique.

(10 Marks)

b. Simplify the given function using MEV technique taking the least significant variable as the map entered variable

 $f(a, b, c, d, e) = \Sigma(1, 3, 4, 6, 9, 11, 12, 14, 17, 19, 20, 22, 25, 27, 28, 30) + \Sigma d(8, 10, 24, 26).$ (10 Marks)

Implement the multiple frections: 3

 $f_1(a, b, c, d) = \Sigma(0, 4, 10, 14, 15)$ and

 $f_2(a, b, c, d) = \Sigma(3/7)$, 13) using two 3 to 8 decoders.

(06 Marks)

b. Implement the following with a suitable decoder with active low enable input and active high output:

 $f(w, x, y, z) = \Sigma(3, 7, 9)$

 $g(a, b, c) = \pi(2, 4, 7).$

(08 Marks)

- c. Draw the interfacing diagram of ten key keypad interface to a digital system using decimal OBCD encoder. (06 Marks)
- Configure a 16 to 1 MUX using 4 to 1 MUX.

Implement the following Boolean function with 8:1 multiplexer

 $f(A, B, C, D) = \Sigma_m(0, 2, 6, 10, 11, 12, 13) + d(3, 8, 14).$

c. Write a truth table for two - bit magnitude comparator. Write the K - Map for each output of two - bit magnitude comparator and the resulting equation. (08 Marks)

PART - B

- 5 What do you mean by sequential circuit? Explain with the help of block diagram? (04 Marks)
 - b. Explain with timing diagram, the working of SR latch as a switch debouncer.
 - c. Explain the working of a master slave JK flip-flop with the help of logic diagram, function table, logic symbol and timing diagram. (10 Marks)

Obtain the characteristic equation for a SR flip-flop.

(04 Marks)

Design a 4-bit register using positive edge triggered D flip-flops to operate as indicated in the table below:

Mode select		Register operation
$\mathbf{a}_{\mathbf{i}}$	\mathbf{a}_0	Register operation
0	0	Hold
0	1	Synchronous clear
1	0	Complement contents
1	1	Circular shift right

Design synchronous Mod - 6 counter using JK flip - flop.

(08 Marks)

Explain means and Moore models of a clocked synchronous sequential circuits.

Analyse the synchronous sequential circuit shown in Fig. 07/03. (08 Marks)

Analyse the synchronous sequential circuit shown in Fig. Q7(6).

(12 Marks)

Write the basic recommended steps for design of a clocked synchronous sequential circuit. 8 (06 Marks)

Construct the excitation table, transition table, state table and state diagram for the Moore sequential circuit shown in Fig. Q8(b). (14 Marks)

L

X3PM

2 of 2